3.130 \(\int \frac{1}{\sqrt{x^2 (a+b x+c x^2)}} \, dx\)

Optimal. Leaf size=45 \[ -\frac{\tanh ^{-1}\left (\frac{x (2 a+b x)}{2 \sqrt{a} \sqrt{a x^2+b x^3+c x^4}}\right )}{\sqrt{a}} \]

[Out]

-(ArcTanh[(x*(2*a + b*x))/(2*Sqrt[a]*Sqrt[a*x^2 + b*x^3 + c*x^4])]/Sqrt[a])

________________________________________________________________________________________

Rubi [A]  time = 0.0216179, antiderivative size = 45, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1996, 1904, 206} \[ -\frac{\tanh ^{-1}\left (\frac{x (2 a+b x)}{2 \sqrt{a} \sqrt{a x^2+b x^3+c x^4}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[x^2*(a + b*x + c*x^2)],x]

[Out]

-(ArcTanh[(x*(2*a + b*x))/(2*Sqrt[a]*Sqrt[a*x^2 + b*x^3 + c*x^4])]/Sqrt[a])

Rule 1996

Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && GeneralizedTrinomialQ[u, x] &&  !Gen
eralizedTrinomialMatchQ[u, x]

Rule 1904

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[-2/(n - 2), Subst[Int[1/(4*a
 - x^2), x], x, (x*(2*a + b*x^(n - 2)))/Sqrt[a*x^2 + b*x^n + c*x^r]], x] /; FreeQ[{a, b, c, n, r}, x] && EqQ[r
, 2*n - 2] && PosQ[n - 2] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{x^2 \left (a+b x+c x^2\right )}} \, dx &=\int \frac{1}{\sqrt{a x^2+b x^3+c x^4}} \, dx\\ &=-\left (2 \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{x (2 a+b x)}{\sqrt{a x^2+b x^3+c x^4}}\right )\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{x (2 a+b x)}{2 \sqrt{a} \sqrt{a x^2+b x^3+c x^4}}\right )}{\sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0228697, size = 70, normalized size = 1.56 \[ -\frac{x \sqrt{a+b x+c x^2} \tanh ^{-1}\left (\frac{2 a+b x}{2 \sqrt{a} \sqrt{a+b x+c x^2}}\right )}{\sqrt{a} \sqrt{x^2 (a+x (b+c x))}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[x^2*(a + b*x + c*x^2)],x]

[Out]

-((x*Sqrt[a + b*x + c*x^2]*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(Sqrt[a]*Sqrt[x^2*(a + x*(b
 + c*x))]))

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 64, normalized size = 1.4 \begin{align*} -{x\sqrt{c{x}^{2}+bx+a}\ln \left ({\frac{1}{x} \left ( 2\,a+bx+2\,\sqrt{a}\sqrt{c{x}^{2}+bx+a} \right ) } \right ){\frac{1}{\sqrt{{x}^{2} \left ( c{x}^{2}+bx+a \right ) }}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(c*x^2+b*x+a))^(1/2),x)

[Out]

-1/(x^2*(c*x^2+b*x+a))^(1/2)*x*(c*x^2+b*x+a)^(1/2)/a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{{\left (c x^{2} + b x + a\right )} x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2*(c*x^2+b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt((c*x^2 + b*x + a)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.39367, size = 300, normalized size = 6.67 \begin{align*} \left [\frac{\log \left (-\frac{8 \, a b x^{2} +{\left (b^{2} + 4 \, a c\right )} x^{3} + 8 \, a^{2} x - 4 \, \sqrt{c x^{4} + b x^{3} + a x^{2}}{\left (b x + 2 \, a\right )} \sqrt{a}}{x^{3}}\right )}{2 \, \sqrt{a}}, \frac{\sqrt{-a} \arctan \left (\frac{\sqrt{c x^{4} + b x^{3} + a x^{2}}{\left (b x + 2 \, a\right )} \sqrt{-a}}{2 \,{\left (a c x^{3} + a b x^{2} + a^{2} x\right )}}\right )}{a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2*(c*x^2+b*x+a))^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(8*a*b*x^2 + (b^2 + 4*a*c)*x^3 + 8*a^2*x - 4*sqrt(c*x^4 + b*x^3 + a*x^2)*(b*x + 2*a)*sqrt(a))/x^3)/s
qrt(a), sqrt(-a)*arctan(1/2*sqrt(c*x^4 + b*x^3 + a*x^2)*(b*x + 2*a)*sqrt(-a)/(a*c*x^3 + a*b*x^2 + a^2*x))/a]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**2*(c*x**2+b*x+a))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.10413, size = 80, normalized size = 1.78 \begin{align*} -\frac{2 \, \arctan \left (\frac{\sqrt{a}}{\sqrt{-a}}\right ) \mathrm{sgn}\left (x\right )}{\sqrt{-a}} + \frac{2 \, \arctan \left (-\frac{\sqrt{c} x - \sqrt{c x^{2} + b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a} \mathrm{sgn}\left (x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2*(c*x^2+b*x+a))^(1/2),x, algorithm="giac")

[Out]

-2*arctan(sqrt(a)/sqrt(-a))*sgn(x)/sqrt(-a) + 2*arctan(-(sqrt(c)*x - sqrt(c*x^2 + b*x + a))/sqrt(-a))/(sqrt(-a
)*sgn(x))